

Simple RPC implementation for Arduino.

[image: _images/simpleRPC.svg]
 [https://github.com/jfjlaros/simpleRPC/graphs/commit-activity][image: _images/badge.svg]
 [https://github.com/jfjlaros/simpleRPC/actions/workflows/arduino-package.yml][image: _images/6115ffd2554cc14545a1def33673b696b2bae1b1.svg]
 [https://simpleRPC.readthedocs.io/en/latest][image: _images/simpleRPC1.svg]
 [https://github.com/jfjlaros/simpleRPC/releases][image: _images/simpleRPC2.svg]
 [https://github.com/jfjlaros/simpleRPC/releases][image: _images/simpleRPC3.svg]
 [https://www.ardu-badge.com/simpleRPC][image: _images/simpleRPC4.svg]
 [https://github.com/jfjlaros/simpleRPC][image: _images/simpleRPC5.svg]
 [https://github.com/jfjlaros/simpleRPC][image: _images/simpleRPC6.svg]
 [https://github.com/jfjlaros/simpleRPC][image: _images/simpleRPC7.svg]
 [https://raw.githubusercontent.com/jfjlaros/simpleRPC/master/LICENSE.md]

This library provides a simple way to export Arduino [https://www.arduino.cc] functions as remote
procedure calls. The exported method definitions are communicated to the host,
which is then able to generate an API interface.

Features:

	For each method, only one line of code is needed for exporting.

	Automatic parameter- and return type inference.

	Support for all native C types and strings.

	Support for arbitrary functions and class methods.

	Optional function and parameter naming and documentation.

	Support for PROGMEM [https://www.arduino.cc/reference/en/language/variables/utilities/progmem/]’s F() macro to reduce memory footprint.

	Support for compound data structures like Tuples, Objects (Tuples with
internal structure), Vectors and arbitrary combinations of these.

	Support for reading multidimensional C arrays (e.g., int**).

	Support for different types of I/O interfaces via plugins, e.g.,

	Bluetooth.

	Ethernet (untested).

	Hardware serial.

	RS485 serial.

	Software serial (untested).

	USB serial.

	WiFi.

	Wire (untested).

	Support for using multiple interfaces at the same time.

The Arduino library is independent of any host implementation, a Python API
client [https://arduino-simple-rpc.readthedocs.io] library is provided as a reference implementation.

Please see ReadTheDocs [https://simpleRPC.readthedocs.io] for the latest documentation.

Quick start

Export any function e.g., digitalRead() and digitalWrite() using the
interface() function.

#include <simpleRPC.h>

void setup() {
 Serial.begin(9600);
}

void loop() {
 interface(Serial, digitalRead, "", digitalWrite, "");
}

These functions are now available on the host under names method0() and
method1().

The documentation string can be used to name and describe the method.

interface(
 Serial,
 digitalRead,
 "digital_read: Read digital pin. @pin: Pin number. @return: Pin value.",
 digitalWrite,
 "digital_write: Write to a digital pin. @pin: Pin number. @value: Pin value.");

This is reflected on the host, where the methods are now named
digital_read() and digital_write() and where the provided API
documentation is also available. In the client reference implementation
documentation, contains an example [https://arduino-simple-rpc.readthedocs.io/en/latest/#quick-start] on how this works.

Further reading

Please read section Usage for more information about exporting normal
functions, class member functions and documentation conventions.

If you want to create your own host library implementation for other
programming languages, the section Protocol should help you on your way.

Contents:

	Introduction
	Motivation

	Installation
	Arduino IDE

	Arduino CLI

	Manual installation

	Usage
	Exporting C functions

	Exporting class methods

	Complex objects

	C arrays

	Plugins
	Multiple I/O interfaces

	Protocol
	Method discovery

	Remote procedure calls

	API documentation
	RPC interface

	Tuples

	Vectors

	Input / output

	Types

	Function Signatures

	RPC function calls

	Deleting objects

	Contributors

Introduction

A remote procedure call to an Arduino device is a common way to read sensor
values or to send control signals. This library provides a simple way to export
any Arduino function, including API documentation.

Motivation

Suppose we have an number of functions that we want to export as remote
procedure calls.

int testInt() {
 return 1;
}

float testFloat() {
 return 1.6180339887;
}

int add(int a, int b) {
 return a + b;
}

A common way of making functions available is to map each of the functions to
an unique value. The Arduino reads one byte from an I/O device and it uses this
to select the appropriated function.

If a function takes parameters, their values need to be read from the I/O
device before calling the function. Any return value needs to be written to the
I/O device after calling the function.

A typical implementation of such an approach is shown below.

void loop() {
 int iValue, iParamA, iParamB;
 float fValue;

 if (Serial.available()) {
 switch (Serial.read()) {
 case 0x00:
 iValue = testInt();
 Serial.write((byte*)&iValue, 2);
 break;
 case 0x01:
 fValue = testFloat();
 Serial.write((byte*)&fValue, 4);
 break;
 case 0x02:
 Serial.readBytes((char*)&iParamA, 2);
 Serial.readBytes((char*)&iParamB, 2);
 iValue = add(iParamA, iParamB);
 Serial.write((byte*)&iValue, 2);
 break;
 }
 }
}

In this implementation, the methods Serial.write() and
Serial.readBytes() are used to encode and decode values.

On the host, the parameter values need to be packed before sending them to the
Arduino, Any return value needs to be unpacked. In the following example, we
assume that a serial connection is made using the pySerial [https://pythonhosted.org/pyserial/] library. The
functions pack and unpack are provided by the struct [https://docs.python.org/2/library/struct.html] library.

Call the testInt() function.
connection.write(pack('B', 0x00))
print(unpack('<h', connection.read(2))[0])

Call the testFloat() function.
connection.write(pack('B', 0x01))
print(unpack('<f', connection.read(4))[0])

Call the add() function.
connection.write(pack('B', 0x02))
connection.write(pack('<h', 1))
connection.write(pack('<h', 2))
print(unpack('<h', connection.read(2))[0])

An implementation like the one described above uses very little bandwidth and
does not require any heavy external libraries on the Arduino. The downsides of
such an approach are clear from the example:

	Quite a bit of boilerplate code is needed.

	Changes have to be made on both the device and the host, keeping the
implementations in sync may become difficult.

	A lot of low-level knowledge of the device methods and their types is
required.

This is where the simpleRPC library comes in, like the implementation above, it
only communicates values but has none of the downsides of an ad hoc protocol.

Installation

Arduino IDE

To install this library in the Arduino IDE [https://www.arduino.cc/en/Main/Software], please follow these
comprehensive installation instructions [https://www.ardu-badge.com/simpleRPC].

Arduino CLI

The latest version can be installed with the Arduino CLI [https://arduino.github.io/arduino-cli/latest] interface using the
following command.

arduino-cli lib install simpleRPC

Manual installation

Latest release

Navigate to the latest release [https://github.com/jfjlaros/simpleRPC/releases/latest] and either download the .zip or the
.tar.gz file and unpack the downloaded archive.

From source

The source is hosted on GitHub [https://github.com/jfjlaros/simpleRPC.git], use the following command to install the
latest development version.

git clone https://github.com/jfjlaros/simpleRPC.git

Usage

Include the header file to use the simpleRPC library.

#include <simpleRPC.h>

The library provides the interface() function, which is responsible for all
communication with the host. To use this function, first initialize the standard
Serial class instance to enable communication using the hardware serial
interface. This is done using the begin() method in the setup() body.

void setup() {
 Serial.begin(9600);
}

Please see the Plugins section for using other I/O interfaces.

Exporting C functions

Standard C functions are exported as RPC methods by calling the interface()
function from the loop() body. This function accepts (function,
documentation) pairs as parameters.

Interface function parameters.

	parameter

	description

	0

	I/O class instance.

	1

	Function one.

	2

	Documentation string of function one.

	3

	Function two.

	4

	Documentation string of function two.

	…

	…

A documentation string consists of a list of key-value pairs in the form key:
value delimited by the @ character. The first pair in this list is
reserved for the RPC method name and its description, all subsequent pairs are
used to name and describe parameters or to describe a return value.

Documentation string.

	field prefix

	key

	value

	
	RPC method name.

	RPC method description.

	@

	Parameter name.

	Parameter description.

	@

	return

	Return value description.

The documentation string may be incomplete or empty. The following defaults are
used for missing keys. All descriptions may be empty.

Default names.

	key

	default

	RPC method name.

	method followed by a number, e.g., method0.

	Parameter name.

	arg followed by a number, e.g., arg0.

	return

	return

To reduce the memory footprint, the F() macro can be used in the
interface() function. This stores the documentation string in program
memory instead of SRAM. For more information, see the progmem [https://www.arduino.cc/reference/en/language/variables/utilities/progmem/] documentation.

Example

Suppose we want to export a function that sets the brightness of an LED and a
function that takes one parameter and returns a value.

void setLed(byte brightness) {
 analogWrite(LED_BUILTIN, brightness);
}

int inc(int a) {
 return a + 1;
}

Exporting these functions goes as follows:

void loop() {
 interface(
 Serial,
 inc, "inc: Increment a value. @a: Value. @return: a + 1.",
 setLed, "set_led: Set LED brightness. @brightness: Brightness.");
}

We can now build and upload the sketch.

The client reference documentation includes an example [https://arduino-simple-rpc.readthedocs.io/en/latest/library.html#example] on how these methods
can be accessed from the host.

Exporting class methods

Class methods are different from ordinary functions in the sense that they
always operate on an object. This is why both a function pointer and a class
instance need to be provided to the interface() function. To facilitate
this, the pack() function can be used to combine a class instance and a
function pointer before passing them to interface().

For a class instance c of class C, the class method f()
can be packed as follows:

pack(&c, &C::f)

The result can be passed to interface().

Example

Suppose we have a library named led which provides the class LED. This
class has a method named setBrightness.

#include "led.h"

LED led(LED_BUILTIN);

Exporting this class method goes as follows:

void loop() {
 interface(
 Serial,
 pack(&led, &LED::setBrightness),
 "set_led: Set LED brightness. @brightness: Brightness.");
}

Complex objects

In some cases, basic C types and C strings are not sufficient or convenient.
This is why simpleRPC supports higher order objects described in detail in the
Tuples and Vectors sections.

Arbitrary combinations of these higher order objects can be made to construct
complex objects.

In the following example, we create a 2-dimensional matrix of integers, a
Vector of Tuples and a Tuple containing an integer, a Vector and an other
Tuple respectively.

Vector<Vector<int> > matrix;

Vector<Tuple<int, char> > v;

Tuple<int, Vector<int>, Tuple<char, long> > t;

These objects can be used as parameters as well as return values. Note that
these objects, like any higher order data structure should be passed by
reference.

C arrays

Passing a C array as a parameter is supported, but since in general it is not
possible to deduce the size or internal structure of an object it is not
possible to return a C array. The closely related Vector should be used in this
case.

In the following example, an integer C array is passed to a function.

void readArray(int* a) {}

Multidimensional arrays are implemented as NULL terminated arrays of
pointers. This allows for structures that do not have a fixed length in any
dimension, e.g., a two-dimensional array int** does not have to be
rectangular.

Plugins

The library supports I/O plugins in order to enable RPC communication over a
range of interfaces. Currently, the following plugins are implemented.

Plugins.

	name

	description

	status

	Serial

	The standard Arduino Serial [https://www.arduino.cc/en/Reference/Serial] interface.

	working

	SoftwareSerial

	The Arduino SoftwareSerial [https://www.arduino.cc/en/Reference/SoftwareSerial] interface.

	untested

	HalfDuplexStream

	RS485 serial interface.

	working

	EthernetClient

	Arduino Ethernet [https://www.arduino.cc/en/Reference/Ethernet] interface.

	untested

	WiFiClient

	Arduino WiFi [https://www.arduino.cc/en/Reference/WiFi101] interface.

	working

	Wire

	I2C / TWI Wire [https://www.arduino.cc/en/Reference/Wire] interface.

	untested

A plugin inherits from Stream and should override the following
methods.

Methods.

	name

	description

	
	Constructor.

	int available()

	Number of bytes available for reading.

	int read()

	Read a single byte or -1 upon error.

	int peek()

	Preview the next byte.

	size_t write(uint8_t)

	Write a single byte, return the number of bytes written.

Usually, the I/O plugin is declared as a global object instance in the sketch
and initialized in the setup() function. See the RS485 [https://github.com/jfjlaros/simpleRPC/blob/master/examples/rs485/rs485.ino] sketch for an
example that uses a custom I/O plugin.

Multiple I/O interfaces

It is possible to use multiple I/O interfaces at the same time. This can be
done by either serving a different set of methods on each interface or by
serving the same set of methods on multiple interfaces.

To serve different methods on each interface, the interface() function is
simply used multiple times.

Example

Suppose we have set up two I/O interfaces named Serial and
SerialUSB, we serve different methods on each of the interfaces as
follows.

void loop() {
 interface(
 Serial,
 inc, F("inc: Increment a value. @a: Value. @return: a + 1."));
 interface(
 SerialUSB,
 setLed, F("set_led: Set LED brightness. @brightness: Brightness."));
}

Alternatively, it is possible to serve the same set of methods on multiple
interfaces. This can be done by passing a Tuple of pointers to the interfaces
as the first parameter of the interface() function.

Example

Suppose we have set up two I/O interfaces named Serial and
SerialUSB, we serve the same methods on both interfaces by grouping
pointers to these interfaces with the pack() function as follows.

void loop() {
 interface(
 pack(&Serial, &SerialUSB),
 inc, F("inc: Increment a value. @a: Value. @return: a + 1."));
}

Finally, it is possible to combine both of the strategies described above.

Protocol

In this section we describe the RPC protocol.

Every exported method defined using the interface() function (see the
Usage section) is assigned a number between 0 and 254 in order of
appearance. The number 0 maps to the first method, the number 1 maps to the
second method, etc.

There are two types of calls to the device: the method discovery call and a
remote procedure call. In both cases, communication is initiated by the host by
writing one byte to the I/O device.

Method discovery

Method discovery is initiated by the host by writing one byte with value
0xff to the I/O device.

The device will respond with a header and a list of method descriptions
delimited by an end of string signature (\0). The list is terminated by an
additional end of string signature. The header format is given in the following
table.

Header format.

	size

	delimiter

	value

	description

	
	\0

	simpleRPC

	Protocol identifier.

	3

	
	\3\0\0 (example)

	Protocol version (major, minor, patch).

	1

	
	< or >

	Endianness, < for little-endian, > for big-endian.

	1

	
	H (example)

	Type of size_t, needed for indexing vectors.

Each method description consists of a struct [https://docs.python.org/3.5/library/struct.html#format-strings] formatted function signature and
a documentation string separated by a ;. The function signature starts with
a struct formatted return type (if any), followed by a : and a space
delimited list of struct formatted parameter types. The format of the
documentation string is described in the Usage section.

For our example, the response for the method discovery request will look as
follows.

h: h;inc: Increment a value. @a: Value. @return: a + 1.\0
: B;set_led: Set LED brightness. @brightness: Brightness.\0
\0

For more complex objects, like Tuples and Vectors, some more syntax is needed
to communicate their structure to the host.

A Tuple type is encoded as a compound type enclosed in parentheses (and
), e.g., (hB) (a 16-bit integer and a byte).
The parentheses make it possible
to communicate its structure to the host, e.g., the concatenation of (hB)
and (ff) is (hB)(ff) and the type signature of a nested Tuple may look
like this ((hB)(ff)).

A Vector type signature is enclosed in brackets [and]. So a vector of
16-bit integers will have as type signature [h].

Finally, any arbitrary combination of Tuples and Vectors can be made, resulting
in type signatures like [((hB)f)], i.e., a Vector of Tuples of which the
first element is an other Tuple (hB) and the second element is a float
f.

Remote procedure calls

A remote procedure call is initiated by the host by writing one byte to the
I/O device of which the value maps to one of the exported methods (i.e., 0
maps to the first method, 1 to the second, etc.). If this method takes any
parameters, their values are written to the I/O device. After the parameter
values have been received, the device executes the method and writes its return
value (if any) back to the I/O device.

All native C types (int, float, double, etc.), Tuples, Vectors and
any combination of these are currently supported. The host is responsible for
packing and unpacking of the values.

API documentation

Contents:

	RPC interface
	Functions

	Tuples
	Tuples

	Helper functions

	Vectors
	Class definition

	Input / output
	Printing

	Reading

	Writing

	Types
	Functions

	Function Signatures
	Functions

	RPC function calls
	Functions

	Deleting objects
	Functions

RPC interface

#include <simpleRPC.h>

See the Usage section for a full description of the RPC interface.

Functions

	
template<class ...Ts>
void interface(Stream &io, Ts... args)

	RPC interface.

The args parameter pack is a list of pairs (function pointer, documentation). The documentation string can be of type char const*, or the PROGMEM F() macro can be used to reduce memory footprint.

	Parameters

	
	io – Stream.

	args – Parameter pairs (function pointer, documentation).

	
template<class ...Ts, class ...Us>
void interface(Tuple<Ts...> t, Us... args)

	Multiple RPC interfaces.

Similar to the standard interface , but with support for multiple I/O interfaces, passed as Tuple t.

See also

interface(Stream&, Ts…)

	Parameters

	
	t – Tuple of input / output objects.

	args – Parameter pairs (function pointer, documentation).

Tuples

#include "tuple.tcc"

Tuples

Tuples can be used to group objects of different types. A Tuple is recursively
defined as being either:

	Empty.

	A pair (head, tail), where head is of an arbitrary type and
tail is an other Tuple.

Initialisation of a Tuple can be done with a brace-initializer-list as follows.

Tuple<int, char> t {10, 'c'};

Element retrieval and assignment is described below in the Helper
functions section.

Note that a Tuple, like any higher order data structure, should be passed by
reference.

Class definitions

	
template<class...>
class Tuple

	Empty Tuple.

	
template<class T, class ...Ts>
class Tuple<T, Ts...>

	Tuple.

Helper functions

Elements of a Tuple can be retrieved in two ways, either via the head and
tail member variables, or using with the get<>() helper function.

int i = t.head;
char c = t.tail.head;

int j = get<0>(t);
char d = get<1>(t)';

Likewise, assignment of an element can be done via its member variables or with
the get<>() helper function.

t.head = 11;
t.tail.head = 'd';

get<0>(t) = 11;
get<1>(t) = 'd';

There are additional helper functions available for the creation of Tuples.

The function makeTuple() can be used to create a temporary Tuple to be used in a
function call.

function(makeTuple('a', 'b', 10));

Functions

	
template<size_t k, class ...Ts>
get(Tuple<Ts...> &t)

	Get the k-th element of a Tuple.

This can be used for both retrieval as well as assignment.

	Parameters

	t – A Tuple.

	Returns

	Reference to the k-th element in t.

	
template<class ...Ts>
Tuple<Ts...> makeTuple(Ts... args)

	Make a Tuple from a parameter pack.

	Parameters

	args – Values to store in a Tuple.

	Returns

	Tuple containing args.

Vectors

#include "vector.tcc"

A Vector is a sequence container that implements storage of data elements. The
type of the vector is given at initialisation time via a template parameter,
e.g., int.

Vector<int> v;
Vector<int> u(12);

In this example, Vector v is of size 0 and u is of size 12. A Vector
can also be initialised with a pointer to an allocated block of memory.

Vector<int> v(12, data);

The memory block is freed when the Vector is destroyed. If this is not
desirable, an additional flag destroy can be passed to the constructor as
follows.

Vector<int> v(12, data, false);

This behaviour can also be changed by manipulating the destroy member
variable.

A Vector can be resized using the resize method.

v.resize(20);

The size member variable contains the current size of the Vector.

Element retrieval and assignment is done in the usual way.

int i = v[10];

v[11] = 9;

Note that a Vector, like any higher order data structure, should be passed by
reference.

Class definition

	
template<class T>
class Vector

	Generic Vector.

Public Functions

	
Vector(size_t const)

	Create a Vector with size elements.

	Parameters

	size – Vector size.

	
template<size_t n>
Vector(T const (&)[n])

	Create a Vector with size elements from a C array.

	Parameters

	arr – C array.

	
Vector(T*const, size_t const)

	Create a Vector with size elements from a block of raw memory.

	Parameters

	
	ptr – Pointer to data, Vector takes ownership.

	size – Vector size.

	
T *data() const

	Get the underlying data.

	Returns

	data.

	
size_t size() const

	Get the number of elements.

	Returns

	Vector size.

	
void resize(size_t const)

	Set the number of elements.

	Parameters

	size – Vector size.

	
void clear()

	Clear the contents.

	
void push_back(T const&)

	Add an element to the back.

	Parameters

	el – Element.

	
void push_back(T const&&)

	Add an element to the back.

	Parameters

	el – Element.

	
T pop_back()

	Remove an element from the back.

	Returns

	Element.

Input / output

Convenience functions for reading and writing. A template class I, is used
as an abstraction for I/O devices like serial ports, wire interfaces and
network interfaces like ethernet. An overview of the required methods of an I/O
plugin is described in the plugins section.

Printing

#include "print.tcc"

The following functions take care of serialisation of:

	Values of basic types.

	C strings (char[], char*, char const[], char const*).

	C++ Strings.

	PROGMEM strings (F() macro).

Finally, a print function that takes an arbitrary amount of parameters is
provided for convenience.

Functions

	
template<class T>
void rpcPrint(Stream &io, T data)

	Print a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcPrint(Stream &io, char *data)

	Print a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcPrint(Stream &io, char const *data)

	Print a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcPrint(Stream &io, String &data)

	Print a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcPrint(Stream &io, __FlashStringHelper const *data)

	Print a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T, class ...Ts>
void rpcPrint(Stream &io, T data, Ts... args)

	Print any number of values.

	Parameters

	
	io – Stream.

	data – Value to be printed.

	args – Remaining values.

Reading

Read functions for deserialisation.

#include "read.tcc"

Functions

	
template<class T>
void rpcRead(Stream &io, T *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
inline void rpcRead(Stream &io, T const *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcRead(Stream &io, char **data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcRead(Stream &io, char const **data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcRead(Stream &io, String *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
void rpcRead(Stream &io, Vector<T> *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
void rpcRead(Stream &io, T **data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T, size_t n>
void rpcRead(Stream &io, Array<T, n> *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
void rpcRead(Stream &io, T const **data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
void rpcRead(Stream &io, T ***data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class ...Ts>
void rpcRead(Stream &io, Tuple<Ts...> *data)

	Read a value from an stream.

	Parameters

	
	io – Stream.

	data – Data.

Writing

Write functions for serialisation.

#include "read.tcc"

Functions

	
template<class T>
void rpcWrite(Stream &io, T *data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcWrite(Stream &io, char **data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcWrite(Stream &io, char const **data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
inline void rpcWrite(Stream &io, String *data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T>
void rpcWrite(Stream &io, Vector<T> *data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class T, size_t n>
void rpcWrite(Stream &io, Array<T, n> *data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

	
template<class ...Ts>
void rpcWrite(Stream &io, Tuple<Ts...> *data)

	Write a value to a stream.

	Parameters

	
	io – Stream.

	data – Data.

Types

#include "types.tcc"

Get a struct [https://docs.python.org/3.5/library/struct.html#format-strings] formatted representation of the type of a value.

Type encoding examples.

	type

	encoding

	description

	bool

	?

	Boolean.

	unsigned long int

	L

	Unsigned integer.

	char const*

	s

	String.

	Tuple<int, signed char, unsigned long>

	ibL

	Tuple (no internal structure).

	Object<Object<char, int>, unsigned long>

	((ci)L)

	Object (internal structure is preserved).

	Vector<int>

	[i]

	Vector.

Functions

	
inline void rpcTypeOf(Stream &io, bool)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, char)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, signed char)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, unsigned char)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, short int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, unsigned short int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, long int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, unsigned long int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, long long int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, unsigned long long int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, float)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, String&)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, char*)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, char const*)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, int)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void rpcTypeOf(Stream &io, double)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
template<class ...Ts>
void rpcTypeOf_(Stream &io, Tuple<Ts...> &t)

	Get the types of all members of a Tuple.

	Parameters

	
	io – Stream.

	t – Tuple.

	
template<class T>
void rpcTypeOf(Stream &io, Vector<T>&)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
template<class T, size_t n>
void rpcTypeOf(Stream &io, Array<T, n>&)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
template<class T>
void rpcTypeOf(Stream &io, T*)

	Type encoding.

	Parameters

	
	io – Stream.

	- – Value.

	
inline void hardwareDefs(Stream &io)

	Determine endianness and type of size_t.

	Parameters

	io – Stream.

Function Signatures

#include "signature.tcc"

Function signature examples.

	signature

	encoding

	description

	short int f(char, float)

	h: c f

	Function that returns a value.

	void f(char, float)

	: c f

	Function that does not return a value.

	void f(Tuple<int, char>&, float)

	: ic f

	A Tuple parameter.

	Object<int, char> f(float)

	(ic): f

	Returning an Object.

	int f(Vector<signed char>&, int)

	i: [b] i

	A Vector parameter.

Functions

	
template<class T, class ...Ts>
void signature(Stream &io, T (*)(Ts...))

	Get the signature of a function.

	Parameters

	
	io – Stream.

	- – Function pointer.

	Returns

	Function signature.

	
template<class T, class C, class ...Ts>
void signature(Stream &io, T (C::*)(Ts...))

	Get the signature of a function.

	Parameters

	
	io – Stream.

	- – Function pointer.

	Returns

	Function signature.

	
template<class ...Ts>
void signature(Stream &io, void (*f)(Ts...))

	Get the signature of a function.

	Parameters

	
	io – Stream.

	- – Function pointer.

	Returns

	Function signature.

	
template<class C, class ...Ts>
void signature(Stream &io, void (C::*)(Ts...))

	Get the signature of a function.

	Parameters

	
	io – Stream.

	- – Function pointer.

	Returns

	Function signature.

RPC function calls

#include "rpcCall.tcc"

Functions

	
template<class T, class ...Ts>
void rpcCall(Stream &io, T (*f)(Ts...))

	Call a function.

Parameter values for f are read from io, after which f is called. Any return value is written back to io.

	Parameters

	
	io – Stream.

	f – Function pointer.

	
template<class C, class P, class T, class ...Ts>
void rpcCall(Stream &io, Tuple<C*, T (P::*)(Ts...)> t)

	Call a class method.

See also

rpcCall(Stream&, T (*)(Ts…))

	Parameters

	
	io – Stream.

	t – Tuple consisting of a pointer to a class instance and a pointer to a class method.

Deleting objects

#include "del.tcc"

Functions

	
template<class T>
void rpcDel(T*)

	Delete a value.

	Parameters

	data – Data.

	
template<class T>
void rpcDel(T **data)

	Delete a value.

	Parameters

	data – Data.

	
template<class T>
void rpcDel(T const **data)

	Delete a value.

	Parameters

	data – Data.

	
template<class T>
void rpcDel(T ***data)

	Delete a value.

	Parameters

	data – Data.

	
template<class T>
void rpcDel(T const ***data)

	Delete a value.

	Parameters

	data – Data.

	
template<class ...Ts>
void rpcDel(Tuple<Ts...> *data)

	Delete a value.

	Parameters

	data – Data.

Contributors

	Jeroen F.J. Laros <jlaros@fixedpoint.nl> (Original author, maintainer)

	Chris Flesher <chris.flesher@stoneaerospace.com> (Non-AVR architecture
support. Ethernet, RS485 serial, USB serial and WiFi support)

	Slavey Karadzhov <slav@attachix.com> (Solving compiler warning messages)

Find out who contributed:

git shortlog -s -e

Index

 G
 | H
 | I
 | M
 | R
 | S
 | T
 | V

G

 	
 	get (C++ function)

H

 	
 	hardwareDefs (C++ function)

I

 	
 	interface (C++ function), [1]

M

 	
 	makeTuple (C++ function)

R

 	
 	rpcCall (C++ function), [1]

 	rpcDel (C++ function), [1], [2], [3], [4], [5]

 	rpcPrint (C++ function), [1], [2], [3], [4], [5]

 	
 	rpcRead (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	rpcTypeOf (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 	rpcTypeOf_ (C++ function)

 	rpcWrite (C++ function), [1], [2], [3], [4], [5], [6]

S

 	
 	signature (C++ function), [1], [2], [3]

T

 	
 	Tuple (C++ class), [1]

V

 	
 	Vector (C++ class)

 	Vector::clear (C++ function)

 	Vector::data (C++ function)

 	Vector::pop_back (C++ function)

 	
 	Vector::push_back (C++ function), [1]

 	Vector::resize (C++ function)

 	Vector::size (C++ function)

 	Vector::Vector (C++ function), [1], [2]

 nav.xhtml

 Table of Contents

 		
 Simple RPC implementation for Arduino.

 		
 Introduction

 		
 Motivation

 		
 Installation

 		
 Arduino IDE

 		
 Arduino CLI

 		
 Manual installation

 		
 Latest release

 		
 From source

 		
 Usage

 		
 Exporting C functions

 		
 Example

 		
 Exporting class methods

 		
 Example

 		
 Complex objects

 		
 C arrays

 		
 Plugins

 		
 Multiple I/O interfaces

 		
 Example

 		
 Example

 		
 Protocol

 		
 Method discovery

 		
 Remote procedure calls

 		
 API documentation

 		
 RPC interface

 		
 Functions

 		
 Tuples

 		
 Tuples

 		
 Helper functions

 		
 Vectors

 		
 Class definition

 		
 Input / output

 		
 Printing

 		
 Reading

 		
 Writing

 		
 Types

 		
 Functions

 		
 Function Signatures

 		
 Functions

 		
 RPC function calls

 		
 Functions

 		
 Deleting objects

 		
 Functions

 		
 Contributors

_static/plus.png

_static/file.png

_static/minus.png

